Abstract

1, N 6-Ethenoadenine (εA) is an exocyclic DNA adduct introduced to DNA by vinyl chloride and related compounds as well as in the consequence of oxidative stress and lipid peroxidation (LPO). This highly genotoxic DNA damage is chemically unstable and either depurinates or converts into pyrimidine ring-opened secondary lesions. We have studied the structures of derivatives formed during εA chemical rearrangement and identified enzymes repairing one of the rearrangement products. Rearrangement involves a water molecule addition to the C(2)N(3) bond of εA, resulting in formation of pyrimidine ring-closed B1 product, which is in equilibrium with pyrimidine ring-opened B2 compound. B2 further deformylates to yield compound C. N-Glycosidic bond of compound C is unstable and C depurinates, yielding compound D. These secondary lesions are not repaired by alkylpurine DNA N-glycosylase, which excises the parental εA. Compound B, when paired with thymine and cytosine is efficiently excised by Escherichia coli formamidopirymidine DNA N-glycosylase (Fpg), and thymine glycol DNA N-glycosylases from E. coli (Nth) and Saccharomyces cerevisiae (Ntg2). B is eliminated from B:G pair only by Nth and Ntg2 glycosylases, however none of the enzymes studied is excising B from B:A pair. This enables finishing of rearrangement, formation of AP sites and subsequently DNA strand breaks. During in vitro translesion synthesis, C is much easier bypassed by DNA polymerases, than compound B, and also than the parental εA as well as than the AP site. This bypass beyond C proceeds mainly by misinsertion of adenine and guanine, or by insertion of thymine, the latter restoring the parental A:T pair. Alternatively, looping out of adducted nucleotide alone or with adjacent one generates one- or two-nucleotide deletions. This may explain the previously reported 20-fold higher mutagenic potency of product C in comparison to εA in E. coli [Biochemistry 32 (1993) 12793].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.