Abstract

The ability to predict chemical reactivity of a molecule is highly desirable in drug discovery, both ex vivo (synthetic route planning, formulation, stability) and in vivo: metabolic reactions determine pharmacodynamics, pharmacokinetics and potential toxic effects, and early assessment of liabilities is vital to reduce attrition rates in later stages of development. Quantum mechanics offer a precise description of the interactions between electrons and orbitals in the breaking and forming of new bonds. Modern algorithms and faster computers have allowed the study of more complex systems in a punctual and accurate fashion, and answers for chemical questions around stability and reactivity can now be provided. Through machine learning, predictive models can be built out of descriptors derived from quantum mechanics and cheminformatics, even in the absence of experimental data to train on. In this article, current progress on computational reactivity prediction is reviewed: applications to problems in drug design, such as modelling of metabolism and covalent inhibition, are highlighted and unmet challenges are posed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.