Abstract

The theoretical description of charge distribution, and related properties, such as chemical reactivity descriptors of chemical compounds, has greatly benefited from the development of density functional theory (DFT) methods. Indeed, most concepts stemmed from DFT but, up to now, they have been used mostly within semiempirical MO methods, Hartree–Fock, or post-Hartree–Fock methods. During the last decade, however, DFT has enabled theoretical chemistry to predict accurately structures and energetics of clusters and molecules. Therefore, more attention should also now be paid to these reactivity descriptors determined directly from DFT calculations. In this work, chemical reactivity is explored in DFT through a functional Taylor expansion of energy that introduces various energy derivatives of chemical significance. This review summarizes their main features and examines the limitations of some indexes presently used for the characterization of reactivity. Also, several perspectives are given. © 1999 John Wiley & Sons, Inc. J Comput Chem 20: 129–154, 1999

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.