Abstract

Chemical reactivity and cathode properties of LaCoO3 were investigated using new oxide ion conductor, lanthanum silicate oxyapatite. The LaCoO3 is found to be good candidate for cathode of the lanthanum silicate oxyapatite solid-electrolyte since no chemical reaction occurred between the LaCoO3 and lanthanum silicate oxyapatite heating at 1273 K for 60 h in air. Based on electrochemical measurements, lower overpotential between the LaCoO3 and lanthanum silicate oxyapatite was confirmed compared to the overpotential at YSZ/LaCoO3 interface. From analysis on the extended interfacial conductivity as function of oxygen activity at the triple phase boundary at fixed temperature, the overpotential evaluated by impedance spectra is the rate limiting process by oxygen diffusion on the LaCoO3 surface. Comparing to the bulk conductivity of LaCoO3, the electrode resistance evaluated by impedance spectra was confirmed to be different from the electrical transport properties of the LaCoO3 bulk.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.