Abstract

The Monte Carlo simulation method introduced by Smith and Triska [J. Chem. Phys.100 (1994) 3019] is extended to the case of a reacting fluid in contact with a hard wall. The fluid structure for both spherical and nonspherical reaction products is discussed for simple models of reacting hard spheres near a hard wall and near a wall interacting via Lennard-Jones (9,3) potential. In the latter case the investigated model assumes that the probability of a chemical reaction changes with a distance from the surface. It is shown that the applied technique is suitable for the study of reacting nonuniform fluids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.