Abstract

In this work, we applied a two-layered ONIOM (B3LYP/6-31G(d):UFF) method to study the reaction of nitric oxides with a 5-1DB defect on the sidewall of the single-walled carbon nanotube (SWCNT). We have chosen a suitable ONIOM model for the calculation of the SWCNT based on the analyses of the frontier molecular orbitals, local density of states, and natural bond orbitals. Our calculations clearly indicate that the 5-1DB defect is the chemically active center of the SWCNT. In the reaction of nitric oxides with the defected SWCNT, the 5-1DB defect site can capture a nitrogen atom from nitric oxides, yielding the N-substitutionally doped SWCNT. We have explored the reaction pathway in detail. Our work verifies the chemical reactivity of the 5-1DB defects of the SWCNTs, indicates that the 5-1DB defect is a possible site for the functionalization of the SWCNTs, and demonstrates a possible way to fabricate position controllable substitutionally doped SWCNTs with a low doping concentration under mild conditions via some simple chemical reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.