Abstract
This paper studies the light focusing phenomenon in optofluidic waveguides and uses it to monitor chemical reactions. Firstly, the relationship between the light focusing pattern and its contributing factors is investigated experimentally. Next, a characterization experiment is conducted to validate the use of light focusing pattern as an indicator of diffusion properties. The sensitivity and the limit-of-detection (LOD) are measured to be 1.54 μm/(μm2/s) and 3.93 × 10−12 m2/s in the over-mixed region, respectively. Then, the sucrose hydrolysis reaction is monitored using the proposed optofluidic method as a demonstration. The initial hydrolysis rate of this reaction is measured to be 19.62 μM/min, which agrees reasonably well with the reported value. Lastly, this method is extended to determine the diffusion coefficient of binary solutions. The diffusion coefficients of ethylene glycol and glycerol in water are measured to be 5.56 ± 0.12 × 10-10 and 7.01 ± 0.20 × 10-10 m2/s, respectively. This study demonstrates a new method for potential integrated biochemical sensing and paves the way for a broad range of sensing applications in microreactors, chemical synthesis, and quantification of biomolecular interactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.