Abstract

This article deals with a study of two dimensional free convective flow of a polar fluid through a porous medium due to combined effects of thermal and mass diffusion in presence of a chemical reaction of first order. The objective of the present investigation is to analyze the free convective flow in the presence of prescribed wall heat flux and mass flux condition. The governing partial differential equations are non- dimensionalized and transformed into a system of non-similar equations. The resulting coupled nonlinear partial differential equations are solved numerically under appropriate transformed boundary conditions using an implicit finite difference scheme in combination with quasilinearisation technique. Computations are performed for a wide range of values of the various governing flow parameters of the velocity, angular velocity, temperature and species concentration profiles and results are presented graphically. The numerical results for local skin friction coefficient, couple stress coefficient, local Nusselt number and local Sherwood number are also presented. The obtained results are compared with previously published work and were to be in excellent agreement. The study reveals that the flow characteristics are profoundly influenced by the polar effects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.