Abstract

The purpose of this paper is to investigate steady two-dimensional laminar magnetohydrodynamic (MHD) flow of an incompressible Jeffrey fluid past over a linearly stretching sheet. The governing partial differential equations (PDEs) of continuity, momentum, energy and concentration are transformed into nonlinear coupled ordinary differential equations (ODEs) by using similarity transformations. Then the ODEs are solved by applying Runge-Kutta fourth order method accompanied with shooting technique. The effects of various physical parameters characterizing the flow phenomenon including Deborah number, ratio of relaxation to retardation times, magnetic parameter, porous parameter, Prandtl number, Eckert number, heat source / sink parameter, Schmidt number and chemical reaction parameter on dimensionless velocity, temperature and concentration profiles are analyzed. The numerical results are obtained and presented in graphs. The present results are compared with the earlier published results as a particular case.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call