Abstract

ABSTRACTThe chemical reaction at the Ni/InP (110) and Ni/GaAs (110) interfaces produced by sequential deposition of thin Ni overlayers onto cleaved semiconductor surfaces has been investigated with valence band (VB) and core level photoemission and Auger spectroscopies using synchrotron radiation as the excitation source. By monitoring changes in the VB, P 2p, In 4d, Ga 3d, As 3d, and Ni 3p photoemission spectra and the lineshape of the P LVV Auger transition during the initial stage of Schottky barrier formation, we found that for both interfaces the first few Å of Ni react strongly with the surface resulting in the formation of a nickel phosphide or nickel arsenide. At the same time, segregation of metallic In or Ga is observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.