Abstract

Solar collectors absorb solar radiation at the focus of solar concentrating systems as heat energy which is further transferred to nanofluid. Entropy creation in Maxwell nanofluid flow over an infinite horizontal surface of a porous media is the subject of the current investigation. A non-linear stretching surface then induces a parabolic trough solar collector (PTSC) flow. The thermal boundary layer is studied using a modified version of Buongiorno's Model. As a result, the PDEs, which encompass the physical aspects of the issue, must be transformed into solvable and boundary-constrained ODEs. By using a proper similarity transformation, boundary conditions and partial differential expressions are reduced to a set of non-linear ordinary differential equations. The Keller box method is used to find approximate solutions to ODEs. Tests are carried out on a nanofluid known as Copper-engine oil (Cu-EO). The Nusselt number was lowered, but the skin friction coefficient was increased as a result of a substantial magnetic parameter. In addition, Reynolds number and Brinkman number are used to measure fluctuations in viscosity, and, as a result, entropy variations throughout the domain are increased. Temperature decreased due to chemical reaction and Schmidt number, while thermal radiation increased skin friction and Nusselt. According to the current analysis, the heat collector has enhanced PTSC with Maxwell nanofluid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call