Abstract

The principle priority of this study is to inspect the performance of two dimensional chemically reacting non-Newtonian fluid bearing Soret, Dufour, thermal radiation, heat source and slip effects. The flow is prompted by a slendering surface with variable thickness. Casson and Williamson fluid models are incorporated in this discussion. Governing equations are evolved and converted into ordinary differential equations using similarity transformations. We adopted homotopy analysis method (HAM) to pick up the solutions. The graphical and tabular results for velocity, temperature, concentration, skin friction factor, local Nusselt number and Sherwood number are secured for both Casson and Williamson fluids. The correspondence between the acquired and previous results reveals that they are in good correlation. It is found that there is a significant increase in the thermal boundary layer thickness when the strength of the Dufour number is increased.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.