Abstract
Cross-linked polyethylene (XLPE) cable is a representative power transmission cable. XLPE has excellent mechanical properties, chemical and heat resistance, and insulation. However, XLPE insulation deteriorates during operation due to electrical, mechanical, and thermal stresses. Among these, thermal stress is a major factor and reduces insulation properties due to a change in molecular structure. Therefore, XLPE characteristic evaluation by heat exposure is essential for power cable condition evaluation. Herein, deteriorated XLPE samples were characterized by tensile strength, X-ray diffraction, Fourier-transform infrared spectroscopy, differential scanning calorimetry, and ultraviolet-visible spectroscopy after exposure to various temperatures and durations. Comparing the tensile strength with other analysis results yielded correlations. Each characteristic showed a linear relationship. The correlation between tensile strength and carbonyl index was the strongest, and the coefficient of determination, R2, was 0.9299. Therefore, these results will provide important information on chemical properties when establishing operational management standards for XLPE insulators in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.