Abstract

The chemical properties of structurally well-defined PdRu/Ru(0 0 0 1) monolayer surface alloys [H. Hartmann, T. Diemant, A. Bergbeiter, J. Bansmann, H.E. Hoster, R.J. Behm, Surf. Sci. in press, doi:10.1016/j.sucs.2008.10.055.] and a Pd monolayer on Ru(0 0 0 1) were studied by temperature programmed desorption and infrared reflection absorption spectroscopy using CO as probe molecule. IR experiments on the PdRu/Ru(0 0 0 1) surface alloys demonstrate that CO adsorption on Ru sites resembles that on pure Ru(0 0 0 1) (on-top adsorption), while adsorption on the Pd sites occurs on both multifold coordinated and on-top sites, similar to CO on Pd(1 1 1). A significant destabilization of CO adsorption on Pd sites for both, surface alloys and the Pd monolayer film, compared to pure Pd(1 1 1) surfaces is attributed to a combination of geometric strain and vertical electronic ligand effects; an additional variation in the CO adsorption bond strength in the surface alloys is attributed to changes in the neighboring surface atom shell (lateral ligand effects). The chemical modifications introduced by PdRu surface alloy formation are compared with findings for deuterium adsorption on the same surface alloys; effects of the two-dimensional (2D) distribution of surface atoms are illustrated by comparison with CO adsorption on PtRu/Ru(0 0 0 1) surface alloys, where in contrast to the pronounced 2D phase segregation in PdRu/Ru(0 0 0 1) the surface atoms are essentially randomly distributed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call