Abstract

The virtual-reality framework AVATAR (Advanced Virtual Approach to Topological Analysis of Reactivity) for the immersive exploration of potential-energy landscapes is presented. AVATAR is based on modern consumer-grade virtual-reality technology and builds on two key concepts: (a) the reduction of the dimensionality of the potential-energy surface to two process-tailored, physically meaningful generalized coordinates, and (b) the analogy between the evolution of a chemical process and a pathway through valleys (potential wells) and mountain passes (saddle points) of the associated potential energy landscape. Examples including the discovery of competitive reaction paths in simple A + BC collisional systems and the interconversion between conformers in ring-puckering motions of flexible rings highlight the innovation potential that augmented and virtual reality convey for teaching, training, and supporting research in chemistry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call