Abstract

The crystal and magnetic structures of the bilayer manganites PrSr2Mn2O7 (PSMO) and PrCa2Mn2O7 (PCMO) have been studied by neutron powder diffraction. It was found that PSMO crystallizes in space group I4/mmm, while PCMO adopts space group Cmc21 at room temperature. The difference in the structure arises from chemical pressure induced by the Ca substitution for Sr on the A sites, which causes different Jahn-Teller distortions. In PSMO, the MnO6 octahedra suffer a small elongated distortion, while those in PCMO adopt strong compressed distortion along the axial direction. In addition, the octahedra in PCMO show a+b0c0 rotation and a0b+c+ tilting in the Glazer notation in comparison to PSMO. As a result, these two compounds adopt very different magnetic structures: The magnetic structure of PSMO is an A-type magnetic structure (Im'm'm) with propagation vector k = (0, 0, 1) and magnetic moments in the ab plane. In contrast, a C-type antiferromagnetic magnetic structure (Cm'c2′1) with the multiple propagation vectors (k = (0, 12, 12) and (0, 12, 0)) and magnetic moments mainly along the b axis is found in PCMO. The critical exponent of the magnetic phase transition is around 0.345 for PSMO and 0.235 for PCMO, indicating 3D and 2D XY transitions, respectively. The strong Jahn-Teller distortion induced by the chemical pressure is believed to suppress the double exchange and favour super-exchange in PCMO, leading to the dramatic difference in the magnetic structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call