Abstract

Presented are the results of testing the method for estimating chemical potentials which was described in paper I. The method, which is based on scaled particle theory, provides accurate chemical potentials in mixtures of softly repulsive particles when used with the Rogers–Young integral equation. Calculated excess Gibbs energies agreed with simulations to an average of −0.67% for 2:1 diameter ratio mixtures. The method provides approximate results in Lennard-Jones mixtures when used with the hybrid mean spherical approximation integral equation theory. Results for supercritical isotherms reproduce simulation data to an average of −3.0%. For subcritical isotherms, vapor results are exact while liquid results are qualitatively correct. The method used with the integral equation theory correctly predicts the effect of energy ratio on the Henry’s Law constant. The predicted effect of size ratio on the constant has an incorrect slope at subcritical temperatures when the solvent density is near the value for a saturated liquid. The incorrect slope results from inaccuracies in the predicted correlation functions for the fluid surrounding the test particle. The method allows estimates to be made of the work of cavity formation and of the strength of solvent–solute binding in near-critical mixtures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call