Abstract
In general, the kernel of QCD's gap equation possesses a domain of analyticity upon which the equation's solution at nonzero chemical potential is simply obtained from the in-vacuum result through analytic continuation. On this domain the single-quark number- and scalar-density distribution functions are $\ensuremath{\mu}$ independent. This is illustrated via two models for the gap equation's kernel. The models are alike in concentrating support in the infrared. They differ in the form of the vertex, but qualitatively the results are largely insensitive to the Ansatz. In vacuum both models realize chiral symmetry in the Nambu-Goldstone mode, and in the chiral limit, with increasing chemical potential, they exhibit a first-order chiral symmetry restoring transition at $\ensuremath{\mu}\ensuremath{\approx}M(0)$, where $M({p}^{2})$ is the dressed-quark mass function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.