Abstract
Nickel-titanium (NiTi) alloys have shown promise for a variety of biomedical applications because of their unique properties of shape memory, superelasticity, and low modulus of elasticity (Young's modulus). Nevertheless, NiTi bulk components cannot be easily machined (e.g., CNC, rolling, grinding, casting, or press molding) due to their thermomechanical sensitivity as well as inherent superelasticity and shape memory. Thus, powder bed fusion (PBF) additive manufacturing has been used to successfully fabricate NiTi medical devices that match the geometric and mechanical needs of a particular patient's condition. However, NiTi PBF fabrication leaves unmelted particles from the source powder adhered to external surfaces, which cause minor dimensional inaccuracy, increase the risk of mechanical failure, and once loose, may irritate or inflame surrounding tissues. Therefore, there is a need to develop a chemical polishing (cleaning) technique to remove unmelted powder from the surfaces of PBF-fabricated implants, especially from inner surfaces that are difficult to access with mechanical polishing tools. This technique is especially useful for highly porous devices printed at high resolution. In this study, a chemical polishing method utilizing HF/HNO3 solution was used to remove loosely attached (i.e., unmelted) powder particles from surfaces of porous, skeletal fixation plates manufactured by PBF AM. It was observed that 7 min of polishing in an HF/HNO3 solution comprising 7.5 HF: 50 HNO3: 42.5 H2O enabled successful removal of all relatively loose and unmelted powder particles. A microcomputed tomography study examination found that the volumetric accuracy of the polished skeletal fixation plates was ±10% compared with the computer-aided design (CAD) model from which it was rendered. This postprocessing chemical polishing protocol is also likely to be useful for removing loose powder, while maintaining CAD model accuracy and mechanical stability for other complexly shaped, porous, three-dimensional (3D), printed NiTi devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.