Abstract

To elucidate the nature of the reactive oxygen species (i.e., superoxide anion radical, hydroxyl radical, and hydrogen peroxide) involved in the metal-catalyzed oxidation of histidine (His) in two model peptides. The degradation of AcAla-His-ValNH2 (Ala-peptide) and AcCysNH2-S-S-AcCys-His-VaNH2 (Cys-peptide) was investigated at pH 5.3 and 7.4 in an ascorbate/cupric chloride/oxygen (ascorbate/ Cu(II)/O2) system, both in the absence and presence of selective scavengers (i.e., catalase, superoxide dismutase, mannitol, sodium formate, isopropanol, and thiourea) of the reactive oxygen species. All reactions were monitored by HPLC. The major degradation products were characterized by electrospray mass spectrometry. The Cys-peptide was more stable than the Ala-peptide at pH 5.3 and 7.4. Both peptides displayed greater stability at pH 5.3 than at 7.4. At pH 5.3, 35 +/- 0.7% of the Cys-peptide and 18 +/- 1% of the Ala-peptide remained after 7 hours, whereas at pH 7.4, 16 +/- 3% of the Cys-peptide and 4 +/- 1% of the Ala-peptide remained. Catalase, thiourea, bicinchoninic acid, and ethylenediaminetetraacetate were effective at stabilizing both peptides toward oxidation, while superoxide dismutase, mannitol, isopropanol, and sodium formate were ineffective. The main degradation products of the Ala- and Cys-peptides at pH 7.4 appeared to be AcAla-2-oxo-His-ValNH2 and AcCysNH2-S-S-AcCys-2-oxo-His-ValNH2, respectively. Hydrogen peroxide, Cu(I), and superoxide anion radical were deduced to be intermediates involved in the oxidation of the Ala- and Cys-peptides. Hydrogen peroxide degradation to secondary reactive oxygen species may have led to the oxidation of the peptides. The degradation of hydrogen peroxide by a Fenton-type reaction was speculated to form a complexed form of hydroxyl radical that reacts with the peptide before diffusion into the bulk solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.