Abstract

This study explored the Fenton-like oxidation of trichloroethylene (TCE) existing as dense non-aqueous phase liquid (DNAPL) in natural silica sand (iron=0.04 g/kg) and the sand from an aquifer (iron=2.01 g/kg). Glass bead containing no iron mineral was used as the control. Batch oxidation experiments were conducted to assess interactions between oxidant and TCE DNAPL. Column experiments were performed to evaluate dynamics of TCE and H 2O 2 during oxidation. The pH was not altered. In the batch system, a single application of 3% H 2O 2 to the aquifer sand oxidized 40% of the added TCE DNAPL in 1 h, which was four times of that by dissolution with the gas purge procedure. This demonstrated the ability of mineral-catalyzed Fenton-like reaction to directly oxidize TCE in non-aqueous liquid. In the column experiments, after passing 7 pore volumes (PVs) of 1.5 and 3% H 2O 2 solution, the residual TCE in aquifer sand column was 12.0 and 2.6% of the initial added, respectively. On the other hand, 28.4% of the added TCE still remained in the silica sand column by 7 PVs of 3% H 2O 2. The distribution of TCE in column and effluent indicated the occurring of direct oxidation of TCE DNAPL and the increased solubilization, which probably due to size reduction of DNAPL droplets, followed by water-phased TCE oxidation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.