Abstract

Oxidation of 2,6-dimethylaniline by electro-Fenton process in acidic solution at pH 2 was investigated. The effects of pH, Fe 2+, H 2O 2 and current density were assessed to determine the optimum operating parameters. The oxidation efficiency of 2,6-dimethylaniline was determined by the reduction of 2,6-dimethylaniline, COD and TOC in the solutions. Results reveal that 1 mM of 2,6-dimethylaniline can be completely degraded in 4 h with 1 mM of Fe 2+ and 20 mM of H 2O 2 and current density of 15.89 A m −2 at pH 2. The highest COD and TOC removal were observed when 120 mM of hydrogen peroxide was applied. Consequently, the electro-Fenton process is a reliable alternative in the degradation of 2,6-dimethylaniline. 2,6-dimethylphenol, 2,6-dimethylnitrobenzene, 2,6-dimethylbenzoquinone, 3-hexanone, lactic acid, oxalic acid, acetic acid, maleic acid and formic acid were detected during the degradation of 1 mM of 2,6-dimethylaniline solution by electro-Fenton method. A reaction pathway that includes these products is proposed for 2,6-dimethylaniline degradation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.