Abstract

We present the improvement of carbon nanotube field effects transistors (CNTFETs) performances by chemical tuning of the nanotube/substrate and nanotube/electrode interfaces. Our work is based on a method of selective placement of individual single walled carbon nanotubes (SWNTs) by patterned aminosilane monolayer and its use for the fabrication of self-assembled nanotube transistors. This method brings a relevant solution to the problem of systematic connection of self-organized nanotubes. The aminosilane monolayer reactivity can be used to improve carrier injection and doping level of the SWNT. We show that the Schottky barrier height at the nanotube/metal interface can be diminished in a continuous fashion down to an almost ohmic contact through these chemical treatments. Moreover, sensitivity to 20 ppb of triethylamine is demonstrated for self-assembled CNTFETs, thus opening new prospects for gas sensors taking advantages of the chemical functionality of the aminosilane used for assembling the CNTFETs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call