Abstract

The worldwide antimicrobial resistance (AMR) dilemma urgently requires rapid and accurate pathogen phenotype discrimination and antibiotic resistance identification. The conventional protocols are either time-consuming or depend on expensive instrumentations. Herein, we demonstrate a metabolic-labeling-assisted chemical nose strategy for phenotyping classification and antibiotic resistance identification of pathogens based on the "antibiotic-responsive spectrum" of different pathogens. d-Amino acids with click handles were metabolically incorporated into the cell wall of pathogens for further clicking with dibenzocyclooctyne-functionalized upconversion nanoparticles (DBCO-UCNPs) in the presence/absence of six types of antibiotics, which generates seven-channel sensing responses. With the assistance of machine learning algorithms, eight types of pathogens, including three types of antibiotic-resistant bacteria, can be well classified and discriminated in terms of microbial taxonomies, Gram phenotypes, and antibiotic resistance. The present metabolic-labeling-assisted strategy exhibits good anti-interference capability and improved discrimination ability rooted in the unique sensing mechanism. Sensitive identification of pathogens with 100% accuracy from artificial urinary tract infection samples at a concentration as low as 105 CFU/mL was achieved. Pathogens outside of the training set can also be discriminated well. This clearly demonstrated the potential of the present strategy in the identification of unknown pathogens in clinical samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.