Abstract

Stress is a ubiquitous and pervasive part of modern life that is frequently blamed for causing a plethora of diseases and other discomforting medical conditions. All higher organisms, including humans, experience stress in the form of a wide variety of stressors that range from environmental pollutants and drugs to traumatic events or self-induced trauma. Stressors registered by the central nervous system (CNS) generate physiological stress responses in the body (periphery) by means of the limbic-hypothalamic-pituitary-adrenal (LHPA) axis. This LHPA axis operates through the use of chemical messengers such as the stress hormones corticotropin-releasing hormone (CRH) and glucocorticoids (GCs). Under conditions of frequent exposure to acute stress and/or chronic, long-term exposure to stress, the LHPA axis becomes dysfunctional and in the process frequently overproduces both CRH and GCs, which results in many mild to severely toxic side effects. Bidirectional communication between the LHPA axis and immune/inflammatory systems can dramatically potentiate these side effects and create environments in the CNS and periphery ripe for the triggering and/or promotion of tissue degeneration and disease. This review aims to present as far as possible a molecular view of the processes involved so as to provide a bridge from the diffuse range of studies on molecular structure and receptor interactions to the burgeoning biological and medical literature that describes the empirical interplay between stress and disease. We hope that our review of this fast-growing field, which we christen chemical neuroimmunology, will give a clear indication of the striking range and depth of current molecular, cellular and medical evidence linking stress hormones to degeneration and disease. In so doing, we hope to provide encouragement for others to become interested in this critical and far-reaching field of research, which is very much at the heart of many important disease processes and very much a critical part of the crucial interface between chemistry and biology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.