Abstract
While nonstoichiometric binary III-V compounds are known to contain group-V antisites, the growth of ternary alloys consisting of two group-V elements might give additional degrees of freedom in the chemical nature of these antisites. Using cross-sectional scanning tunneling microscopy (STM), we investigate low-temperature-grown dilute GaAs1−xPx alloys. High concentrations of negatively charged point defects are found. Combined with transmission electron microscopy and pump-probe transient reflectivity, this study shows that the defects have a behavior similar to the group-V antisites. Further analyses with x-ray diffraction point to the preferential incorporation of arsenic antisites, consistent with ab initio calculations, that yield a formation energy 0.83 eV lower than for phosphorus antisites. Although the negative charge carried by the arsenic antisites in the STM images is shown to be induced by the proximity of the STM tip, the arsenic antisites are not randomly distributed in the alloy, providing insight into the evolution of their charge state during the growth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.