Abstract

Carbon fabric (CF)/phenolic laminates filled with pristine and chromic acid treated ultra high molecular weight polyethylene (UHMWPE) microparticles were fabricated. Their interfacial and tribological properties in water environment were comparatively investigated. The interlaminar shear strength (ILSS) of the laminates was tested on a universal testing machine (DY35), and the tribological properties were evaluated by a block-on-ring tribo-tester. The worn surfaces and the interfaces of the laminates were respectively analyzed by scanning electron microscope (SEM) and field emission SEM (FESEM). The change of the chemical composition of UHMWPE microparticles after chromic acid etching was analyzed by Fourier transform infrared spectroscopy (FTIR). The chemical state of carbon fiber surface was examined using X-ray photoelectron spectroscopy (XPS). The results revealed that the chromic acid treated UHMWPE microparticles had more remarkable effect than the pristine ones on improving not only ILSS and wear resistance of CF/phenolic laminate, but also its immunity to water environment. This should be attributed to the strengthened interfaces in treated UHMWPE/CF/phenolic laminate, which were characterized by the drawn dendritic UHMWPE fibrils firmly clinging on the surfaces of carbon fibers and resin in a Boston ivy-like manner. Copyright © 2015 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call