Abstract

Two strategies for introducing long chain branching (LCB) to a polypropylene homopolymer (PP) are evaluated in terms of the product's molecular weight and branching distributions, and in terms of melt-state shear and extensional rheological properties. Single step processes involving radical-mediated addition of PP to triallyl phosphate are shown to generate bimodal products with highly differentiated chain populations, while a two step sequence involving PP addition to vinyltriethoxysilane followed by moisture-curing is shown to generate more uniform architectures. As a result, the sequential approach can improve low-frequency shear viscosity and extensional strain hardening characteristics while staying below the polyolefin's gel point. The composition and molecular weight distribution transformations that underlie sequential LCB techniques are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.