Abstract

ABSTRACTIndium-tin-oxide (ITO) is the most widely used material as a transparent electrode due to its excellent transparency and high conductivity. The devices based on bare ITO, however, exhibited inefficient hole injection due to insufficient high work function and required high drive voltages. Thus, various surface treatments of ITO have been attempted to change the work function of ITO in order to reduce the hole injection barrier height. Electroluminescent (EL) characteristics of devices were improved dramatically using ITO chemically modified with H-, Cl-, and CF3-terminated benzoyl chlorides. By the use of reactive -COCl groups, ITO surfaces were modified quickly and the work function of the modified ITO was changed widely depending upon the permanent dipole moments introduced in p-position of benzoyl chloride. We also compared the performance of the EL devices with ITO modified with different binding groups (-SO2Cl, -COCl, and -PO2Cl2) of p-chlorobenzene derivatives. Finally, we examined the correlation between the change in the work function and the performance of the EL devices by the chemical modification and found that the enormous increase in ITO work function up to 0.9 eV is possible using phenylphosphoryl dichloride with a CF3-terminal group in p-position.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call