Abstract

AbstractNatural hemp fibers were chemically modified using silane coupling agents to reduce their hydrophilic character. The existence of a chemical bond between coupling agents and hemp fibers was confirmed by ATR‐FTIR spectroscopy, 29Si Nuclear Magnetic Resonance (NMR), thermogravimetric analysis (TGA), energy dispersive spectroscopy (EDS), and BET surface area measurements. It was shown that the initial concentration and the chemical structure of the organosilane coupling agent have an effect on the grafted quantity on the hemp fiber surfaces. The grafted quantity increased proportionally to the initial concentration of silane molecules. The presence of polar amino end group (NH2) in silane structure can cause an increase in the grafted quantity, compared with results obtained in the case of silane molecules containing methacryloxy groups. This effect is attributed to the formation of hydrogen bonds between NH2 and unreacted hydroxyl groups of hemp fibers. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.