Abstract

Aspergillus niger β-glucosidase was modified by covalent coupling to periodate activated polysaccharides (glycosylation). The conjugated enzyme to activated starch showed the highest specific activity (128.5 U/mg protein). Compared to the native enzyme, the conjugated form exhibited: a higher optimal reaction temperature, a lower Ea (activation energy), a higher K m (Michaelis constant) and Vmax (maximal reaction rate), and improved thermal stability. The calculated t 1/2 (half-life) values of heat in-activation at 60 °C and 70 °C were 245.7 and 54.5 min respectively, whereas at these temperatures the native enzyme was less stable (t 1/2 of 200.0 and 49.5 min respectively). The conjugated enzyme retained 32.3 and 29.7%, respectively from its initial activity in presence of 5 mM Sodium Dodecyl Sulphate (SDS) and p -Chloro Mercuri Benzoate ( p -CMB), while the native enzyme showed a remarkable loss of activity (retained activity 1.61 and 13.7%, respectively). The present work has established the potential of glycosylation to enhance the catalytic properties of β-glucosidase enzyme, making this enzyme potentially feasible for biotechnological applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.