Abstract

Alginates are (1→4)-linked linear copolysaccharides composed of β-D-mannuronic acid (M) and its C-5 epimer, α-l-guluronic acid (G). Several strategies to synthesize organically modified alginate derivatives have been reported, but almost all chemistries are performed in either aqueous or aqueous-organic media. The ability to react alginates homogeneously in organic solvents would open up access to a wide range of new chemistries and derivatives. However, past attempts have been restricted by the absence of methods for alginate dissolution in organic media. We therefore report a strategy to dissolve tetrabutylammonium (TBA) salts of alginic acid in polar aprotic solvents containing tetrabutylammonium fluoride (TBAF). Acylation of TBA-alginate was performed under homogeneous conditions, such that both M and G residues were acetylated up to a total degree of substitution (DS) ≈1.0. Performing the same reaction under heterogeneous conditions resulted in selective acylation of M residues. Regioselectivity in the acylated alginate products was studied, and degradation under basic reaction conditions was probed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call