Abstract

Photoaffinity labeling of the single neurophysin tyrosine, Tyr-49, with Met-Tyr-azido-Phe amide has been reported to inhibit both neurophysin self-association and peptide binding. Accordingly, we investigated the functional consequences of modification, principally by tetranitromethane, of Tyr-49. Tetranitromethane-mediated tyrosine-tyrosine cross-linking permitted synthesis of covalent neurophysin "dimers" and of peptide-protein conjugates, the latter potentially analogous to the photoaffinity-labeled product. The self-association and binding properties of the covalent dimers were found to be similar or enhanced relative to those of the native protein. In contrast to the photoaffinity-labeled product, covalent conjugates of Tyr-49 with the ligand peptides Met-Phe-Tyr amide, Phe-Tyr amide, and Tyr-Phe amide also generally exhibited normal or increased binding affinity for exogenous peptide; a subfraction of the Phe-Tyr amide adducts showed evidence of reduced affinity. Diiodination of Tyr-49 had no significant effect on binding. However, among the products of tetranitromethane treatment in the absence of peptide was a novel inactive non-cross-linked product, representing modification only of Tyr-49 but containing no demonstrable nitrophenol. As evidenced by circular dichroism and nuclear magnetic resonance (NMR), this product was not significantly unfolded and retained the ability to self-associate. These latter results provide the strongest evidence thus far of a role for Tyr-49 in peptide-hormone binding. The disparate effects of different Tyr-49 modifications are collectively interpreted and reconciled with NMR data and the properties of the photoaffinity-labeled protein to suggest potential mechanisms of Tyr-49 participation in binding and the probable orientation of Tyr-49 relative to peptide residue 3 in neurophysin complexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.