Abstract

Successful integration of copper and low dielectric constant (low-k) materials is dependent on robust chemical-mechanical planarization (CMP) during damascene patterning. This process includes the direct removal of copper and interaction of the copper slurry with the underlying dielectric. Experiments were designed and performed to examine the CMP of two low-k polymers from Dow Chemical Company, bis-benzocyclobutene (BCB*, k=2.65) and “silicon-application low-k material” (SiLK* resin, k=2.65) with both acidic slurries suitable for copper damascene patterning and a KH phthalate-based model slurry developed for SiLK. Blanket polymer films were polished in order to determine the interactions that occur when copper and liner materials are removed by the damascene CMP process. Removal rates were obtained from material thickness measurements, post-CMP surface topography from AFM scans, and post-CMP surface chemistry from XPS measurements. Physically based wafer-scale models are presented which are compatible with the experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.