Abstract

This work describes the chemical, mechanical and antibacterial properties of a novel silver nanocluster/silica composite coating, obtained by sputtering, on textiles for use in nuclear bacteriological and chemical (NBC) protection suites and for aerospace applications.The properties of the coated textiles were analyzed in terms of surface morphology, silver concentration and silver release in artificial sweat and synthetic tap water, respectively. No release of silver nanoparticles was observed at given conditions.The water repellency, permeability, flammability and mechanical resistance of the textiles before and after sputtering demonstrated that the textile properties were not negatively affected by the coating.The antibacterial effect was evaluated at different experimental conditions using a standard bacterial strain of Staphylococcus aureus and compared with the behavior of uncoated textiles.The coating process conferred all textiles a good antibacterial activity. Optimal deposition conditions were elaborated to obtain sufficient antibacterial action without altering the aesthetical appearance of the textiles.The antibacterial coating retained its antibacterial activity after one cycle in a washing machine only for the Nylon based textile.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.