Abstract

Chemical looping gasification is an efficient technology to convert biomass into valuable syngas. The iron-based oxygen carriers are a promising option for large-scale commercial applications due to their low cost and environmentally-friendly properties. The present study aims at evaluating the performance of the syngas production from the chemical looping gasification of torrefied woodchips in a pilot-scale bubbling fluidized bed reactor using iron ore and ilmenite as oxygen carriers. The effects of the operating parameters were investigated in this study. The results show that an increase in operating parameters could favor the process performance. Carbon conversion efficiency and the yields accelerate at high operating conditions. Carbon conversion efficiency showed a maximum value of 91.42% for iron ore at the ratio of oxygen carrier-to-biomass of 6, while the gas yield reaches the peak at SBR of 1.4 for ilmenite. The addition of steam in biomass chemical looping gasification improves hydrogen production and syngas quality in the product gas. Despite ilmenite provides better performance for hydrogen production, it characterizes by a lower reactivity compared to iron ore. It is also found that iron ore performs better at lower values of steam-to-biomass ratios and temperatures, while ilmenite shows good results at higher those parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call