Abstract

Continuous wave (cw) and repetitively pulsed (rp) hydrogen fluoride (HF) and deuterium fluoride (DF) chemical laser interactions with human cardiovascular tissues have been studied in order to understand ablation phenomenology, effects, and mechanisms under well characterized laser irradiation conditions. CW HF/DF experiments were performed on normal and atherosclerotic tissues over a broad irradiance range (3-20 kW/cm2) to determine thermal coupling coefficients and effective enthalpies of ablation as a function of laser wavelength and tissue type. Similar experiments were completed using a rp HF chemical laser with a submicrosecond pulse duration. Plume probing experiments were also performed to characterize particle formation (i.e., spallation) generated by rp laser ablation. All of the data are used to consider the physical and chemical processes associated with thermal coupling phenomenology and thermochemical pyrolysis and ablation of cardiovascular tissues irradiated by infrared lasers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call