Abstract

4'-Phosphopantetheinylation is an essential posttranslational modification of the primary and secondary metabolic pathways in prokaryotes and eukaryotes. Several peptide-based natural products are biosynthesized by large, multifunctional enzymes known as nonribosomal peptide synthetases (NRPSs), responsible for producing virulence factors and many pharmaceuticals. The thiolation (T) domain serves as a covalent tether for substrates and intermediates in nonribosomal peptide biosynthesis and must be posttranslationally modified with a 4'-phosphopantetheinyl group. To detect 4'-phosphopantetheinylation of NRPS in bacterial proteomes, we developed a 5'-(vinylsulfonylaminodeoxy)adenosine scaffold with a clickable functionality, enabling effective chemical labeling of 4'-phosphopantethylated NRPSs. In this chapter, we describe the design and synthesis of an activity-based protein profiling probe and summarize our work toward developing a series of protocols for the labeling and visualization of 4'-phosphopantetheinylation of endogenous NRPSs in complex proteomes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call