Abstract
Criegee intermediates play an important role in the oxidizing capacity of the Earth's troposphere. Although extensive studies have been conducted on Criegee intermediates in the past decade, their kinetics with radical species remain underexplored. We investigated the kinetics of the simplest Criegee intermediate, CH2OO, with the methyl peroxy radical, CH3O2, as a model system to explore the reactivities of Criegee intermediates with peroxy radicals. Using a multipass UV-Vis spectrometer coupled to a pulsed-laser photolysis flow reactor, CH2OO and CH3O2 were generated simultaneously from the photolysis of CH2I2/CH3I/O2/N2 mixtures with CH2OO measured directly near 340 nm. We determined a reaction rate coefficient kCH2OO+CH3O2 = (1.7 ± 0.5) × 10-11 cm3 s-1 at 294 K and 10 Torr, where the influence of iodine adducts is reduced. This rate coefficient is faster than previous theoretical predictions, highlighting the challenges in accurately describing the interaction between zwitterionic and biradical characteristics of Criegee intermediates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.