Abstract

The high-performance solid propellants play very important role in defense industry, which required highly energetic binders with good mechanical properties. In order to get the activation parameters for energetic binders, In-Situ FT-IR spectroscopic technique is used to study the chemical kinetics of glycidyl azide polymer (GAP) and hydroxyl terminated poly butadiene (HTPB) with isophorone diisocyanate (IPDI) at various temperatures. The reaction was followed by monitoring the change in intensity of the absorption band of NCO stretching at 2257cm-1 and CO stretching at 1731cm-1. The polyurethane reaction has been found to be second order and the rate constant seems to be different between GAP/IPDI and HTPB/IPDI due to reactivity difference of OH groups. Dibutyl tin dilurate (DBTDL) was used as curing catalyst. By using Arrhenius and Eyring equations, the activation parameters were obtained at different temperatures (60, 70, 80 and 90°C). The apparent activation energy for the two systems GAP/IPDI and HTPB/IPDI were found to be 63.51 kJ mol-1 and 41.06 kJ mol-1 while the enthalpy and entropy of activation were found to be 62.35 kJ mol-1 and-36.24 kJ.mol-1K-1, 39.08 J mol-1 and-98.84 J mol-1K-1 respectively.Key words: In-Situ FT-IR; glycidyl azide polymer (GAP); hydroxyl terminated poly butadiene (HTPB); chemical kinetics; polyurethane; dibutyl tin dilurate (DBTDL).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call