Abstract

The mechanical properties of adhesive joints are degraded in the presence of water. The progressive decrease in strength has been attributed to propagation of interfacial cracks. Water diffusion and the stress distribution within the joint as a function of time are modeled using the finite element method in this study. The stress history at the interface showed spatially invariant characteristics similar to that of interfacial water concentration history as a function of diffusion. The water-stress history along the interface can be modeled as a function dependent principally on water concentration, and is independent of position. On this basis, a chemical kinetic model is proposed to explain the joint strength degradation data reported in literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.