Abstract

Solutions containing from 10 -5 to 10 -2 moles per liter of aluminum and dissolved silica in various ratios were aged at pH levels between 4 and 10 at 25?C. A colloidal amorphous product having the composition of halloysite was produced in most solutions. It had a consistent and reversible equilibrium solubility equivalent to a standard free energy of formation of -8974 ? 1.0 kcal per mole for the formula A12Si2O5(OH)4. Some aging times were longer than 4 years, but most solutions gave consistent solubilities after only a few months of aging. Where silica concentrations were below about 10 -4 molar, microcrystalline gibbsite was formed below pH 6.0 and crystalline bayerite above pH 7.0, but only after much longer aging than was required for crystallization in silica-free solutions. Electron micrographs and diffraction patterns of the synthesized material indicate some crystallinity in the aluminosilicate, but no X-ray diffraction patterns could be obtained even in the material aged 4 years. Solubility relationships for solutions containing fluoride as well as silica and aluminum are explainable by using cryolite stabilities determined in previous work. Aluminum contents of 51 samples of water analyzed for other purposes are in reasonable agreement with the assumption of equilibrium with amorphous clay mineral species similar to the material synthesized in this work. Solubility calculations are summarized graphically for solutions of ionic strength of 0.01 and 0.10.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call