Abstract

A reagent panel containing ten 4-substituted 4-nitrophenyl α-D-sialosides and a second panel of the corresponding sialic acid glycals were synthesized and used to probe the inhibition mechanism for two neuraminidases, the N2 enzyme from influenza type A virus and the enzyme from Micromonospora viridifaciens. For the viral enzyme the logarithm of the inhibition constant (Ki) correlated with neither the logarithm of the catalytic efficiency (kcat/Km) nor catalytic proficiency (kcat/Km kun). These linear free energy relationship data support the notion that these inhibitors, which include the therapeutic agent Relenza, are not transition state mimics for the enzyme-catalyzed hydrolysis reaction. Moreover, for the influenza enzyme, a correlation (slope, 0.80 ± 0.08) is observed between the logarithms of the inhibition (Ki) and Michaelis (Km) constants. We conclude that the free energy for Relenza binding to the influenza enzyme mimics the enzyme-substrate interactions at the Michaelis complex. Thus, an influenza mutational response to a 4-substituted sialic acid glycal inhibitor can weaken the interactions between the inhibitor and the viral neuraminidase without a concomitant decrease in free energy of binding for the substrate at the enzyme-catalyzed hydrolysis transition state. The current findings make it clear that new structural motifs and/or substitution patterns need to be developed in the search for a bona fide influenza viral neuraminidase transition state analogue inhibitor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call