Abstract

Current drug discovery efforts focus primarily on proteins with defined enzymatic or small molecule binding sites. Autoregulatory domains represent attractive alternative targets for small molecule inhibitors because they also occur in noncatalytic proteins and because allosteric inhibitors may avoid specificity problems inherent in active site-directed inhibitors. We report here the identification of wiskostatin, a chemical inhibitor of the neural Wiskott-Aldrich syndrome protein (N-WASP). Wiskostatin interacts with a cleft in the regulatory GTPase-binding domain (GBD) of WASP in the solution structure of the complex. Wiskostatin induces folding of the isolated, unstructured GBD into its autoinhibited conformation, suggesting that wiskostatin functions by stabilizing N-WASP in its autoinhibited state. The use of small molecules to bias conformational equilibria represents a potentially general strategy for chemical inhibition of autoinhibited proteins, even in cases where such sites have not been naturally evolved in a target.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.