Abstract

Recent progress on the chemical immobilization of heteropolyacid (HPA) catalyst on inorganic mesoporous material is reported in this review. Mesostructured cellular foam silica, mesoporous carbon, and nitrogen-containing mesoporous carbon were used as supporting materials. The mesoporous materials were modified to have a positive charge, and thus, to provide sites for the immobilization of HPA catalyst. By taking advantage of the overall negative charge of heteropolyanion, the HPA catalyst was chemically immobilized on the surface-modified mesoporous material as a charge-compensating component. Characterization results showed that the HPA catalyst was finely and molecularly dispersed on the surface of mesoporous material via strong chemical immobilization, and that the pore structure of mesoporous material was still maintained even after the immobilization of HPA catalyst. The supported HPA catalysts were applied to the model vapor-phase ethanol conversion, 2-propanol conversion, and methacrolein oxidation reactions. The supported HPA catalyst showed a better oxidation catalytic activity than the unsupported HPA catalyst in the model reactions. The enhanced oxidation catalytic performance of the supported HPA catalyst was attributed to the finely dispersed HPA catalyst, which was chemically immobilized on the positive site of mesoporous material by sacrificing its proton (Bronsted acid site). The HPA catalyst chemically immobilized on mesoporous material served as an excellent oxidation catalyst.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call