Abstract

Elucidating the chemical composition of microfluidic flows is crucial in both understanding and optimising reactive processes within small-volume environments. Herein we report the implementation of a novel detection methodology based on Attenuated Total Reflection (ATR)-Fourier Transform Infra-Red (FTIR) spectroscopic imaging using an infrared focal plane array detector for microfluidic applications. The method is based on the combination of an inverted prism-shape ATR crystal with a poly(dimethylsiloxane)-based microfluidic mixing device. To demonstrate the efficacy of this approach, we report the direct measurement and imaging of the mixing of two liquids of different viscosities and the imaging and mixing of H2O and D2O with consecutive H/D isotope exchange. This chemically specific imaging approach allows direct analysis of fluid composition as a function of spatial position without the use of added labels or dyes, and can be used to study many processes in microfluidics ranging from reactions to separations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.