Abstract

A chemical heterogeneity of Mn is introduced into the parent austenite of a Fe-0.2C-2Mn steel. The Mn-rich regions in the parent austenite is substantially stabilized by a promoted C partitioning during the austenite to ferrite transformation, without which these regions cannot be preserved as retained austenite. Following this strategy, a multiphase microstructure is achieved which presents a better combination of strength (ultimate strength of 977 MPa) and ductility (uniform elongation of 17.9%) as compared with that of other Si- or Al-added AHSSs of similar compositions. The results here suggest an alternative, yet a simple route, to acquire retained austenite in advanced high strength steels without the need of Si and Al alloying.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.