Abstract

The minimal instrumentation of portable medical diagnostic devices for point-of-care applications is facilitated by using chemical heating in place of temperature-regulated electrical heaters. The main applications are for isothermal nucleic acid amplification tests (NAATs) and other enzymatic assays that require elevated, controlled temperatures. In the most common implementation, heat is generated by the exothermic reaction of a metal (e.g., magnesium, calcium, or lithium) with water or air, buffered by a phase-change material that maintains a near-constant temperature to heat the assay reactions. The ability to incubate NAATs electricity-free and to further to detect amplification with minimal instrumentation opens the door for fully disposable, inexpensive molecular diagnostic devices that can be used for pathogen detection as needed in resource-limited areas and during natural disasters, wars, and civil disturbances when access to electricity may be interrupted. Several design approaches are reviewed, including more elaborate schemes for multiple stages of incubation at different temperatures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.