Abstract
Commercialization of rechargeable lithium-ion (Li-ion) batteries has revolutionized the design of portable electronic devices and is facilitating the current transition to electric vehicles. The technological specifications of Li-ion batteries continue to evolve through the introduction of various high-risk liquid electrolyte chemicals, yet critical evaluation of the physical, environmental, and human health hazards of these substances is lacking. Using the GreenScreen for Safer Chemicals approach, we conducted a chemical hazard assessment (CHA) of 103 electrolyte chemicals categorized into seven chemical groups: salts, carbonates, esters, ethers, sulfoxides-sulfites-sulfones, overcharge protection additives, and flame-retardant additives. To minimize data gaps, we focused on six toxicity and hazard data sources, including three empirical and three nonempirical predictive data sources. Furthermore, we investigated the structural similarities among selected electrolyte chemicals using the ChemMine tool and the simplified molecular input line entry systeminputs from PubChem to evaluate whether chemicals with similar structures exhibit similar toxicity. The results demonstrate that salts, overcharge protection additives, and flame-retardant additives contain the most toxic components in the electrolyte solutions. Furthermore, carbonates, esters, and ethers account for most flammability hazards in Li-ion batteries. This study supports the complementary use of quantitative structure-activity relationship modelsto minimize data gaps and inconsistencies in CHA. Integr Environ Assess Manag 2024;20:2231-2244. © 2024 The Author(s). Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Integrated environmental assessment and management
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.