Abstract

Translation initiation plays a critical role in cellular homeostasis, proliferation, differentiation and malignant transformation. Consistently, increasing the abundance of the eIF2·GTP·Met-tRNAi translation initiation complex transforms normal cells and contributes to cancer initiation and the severity of some anemia. The chemical modifiers of the eIF2·GTP·Met-tRNAi ternary complex are therefore invaluable tools for studying its role in the pathobiology of human disorders and for determining if this complex can be pharmacologically targeted for therapeutic purposes. Using a cell based assay, we identified N,N’-diarylureas as novel inhibitors of the ternary complex abundance. Direct functional-genetics and biochemical evidence demonstrated that the N,N’-diarylureas activate heme regulated inhibitor kinase, thereby phosphorylate eIF2α and reduce abundance of the ternary complex. Using tumor cell proliferation in vitro and tumor growth in vivo as paradigms, we demonstrate that N,N’-diarylureas are potent and specific tools for studying the role eIF2·GTP·Met-tRNAi ternary complex in the pathobiology of human disorders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.